Expressive performance rendering (EPR) and automatic piano transcription (APT) are fundamental yet inverse tasks in music information retrieval: EPR generates expressive performances from symbolic scores, while APT recovers scores from performances. Despite their dual nature, prior work has addressed them independently. In this paper, we propose a unified framework that jointly models EPR and APT by disentangling note-level score content and global performance style representations from both paired and unpaired data. Our framework is built on a transformer-based sequence-to-sequence (Seq2Seq) architecture and is trained using only sequence-aligned data, without requiring fine-grained note-level alignment. To automate the rendering process while ensuring stylistic compatibility with the score, we introduce an independent diffusion-based performance style recommendation (PSR) module that generates style embeddings directly from score content. This modular component supports both style transfer and flexible rendering across a range of expressive styles. Experimental results from both objective and subjective evaluations demonstrate that our framework achieves competitive performance on EPR and APT tasks, while enabling effective content–style disentanglement, reliable style transfer, and stylistically appropriate rendering.